|
马上注册,结交更多好友,享用更多功能,让你轻松玩转新大榭论坛!
您需要 登录 才可以下载或查看,没有账号?注册
x
二分搜索 是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
4 H9 }' `" Y- Z4 R# n
; c" _8 N. C. l7 b' r1 A( d- """& R. l0 |8 Q8 `
- 顺序查找经典案例1
- ]8 ^8 O' Z, C$ z8 d5 K - 素材来自新大榭Python学习社区,帖子号:7124#
( m) c- k" E& Z$ J9 ^+ ~# } - 首页 http://www.daxie.net.cn/py/ % M# Q$ J4 \: W; {! n
- """9 `5 n, P5 A0 }
- a=[1,3,4,6,7,8,10,13,14] #待查找的数组a,升序排列- W- H6 j6 P1 n; ^
- key=int(input("要查找的数据为:")) #输入待查的目标数据key
. v% E: I/ n. G. J* l. y- e$ {: X! j - L=0 #最开始的比较范围从a[0]开始,故设定左边界下标为0- O! X& e2 I- X0 j7 F7 I( X% r
- R=len(a)-1 #最开始的比较范围到a[len(a)-1]结束,故右边界下标为len(a)-1
# Q- f8 h- I7 H% L4 C - flag=False #初始化定义没有找到时的值为False% A% _- R( h* q& A9 t$ W% n
- while L<=R: #左边界小于有边界,即当范围内有数据时 D* B) B! R+ |. k! d) d6 }! m
- m=(L+R)//2 #取中间元素的下标m+ u/ l5 e; T: a* N" I: M
- if a[m]==key: #比较中间元素与key,若相等 C6 o5 x. N" v! V
- flag=True #满足相等条件,即成功找到元素
" [: w: M9 }; j6 J* p - break #结束循环,退出循环8 e/ s( }6 P' q$ b+ H
- if key<a[m]: #如果key比中间元素a[m]小
. v, V* n/ R! B - R=m-1 #右边界改为m左边一位的元素(m已经被比较不用划入范围)
1 ]$ V3 U7 H% {" w- m# x - else: #否则(key比中间元素大)
, |% p, t$ b" [! r7 L - L=m+1 #左边界改为m右边一位的元素, B) K* b+ r* X3 h" x& F K
- if flag==True:
& K8 w; y) Y0 |( n( y - print("key=",key,"在序列a[",m,"]中,","查找成功!") #成功查找的状态,输出查找成功
' ?% N( d+ X: Q$ h - else:
9 S9 p0 _, y9 J9 {( o. `# a - print("查找失败") #未找到的状态,输出查找失败
- k, Y. R! h5 X& W) Y$ m& J: D
% u; I S) o7 C6 m$ g: {- #【分析思考】
& O: N5 @4 s! c6 \9 | - # 略。。。
$ E2 |- R b/ X; s4 x. ^& ?) R - " i; P0 R+ w; O
- """% w4 K2 C2 y, D g9 h% _
- 注:选择性必修1配套资料《辅助衔接手册》P29 范例4
# V) V5 ?8 g7 a7 q, c - """
复制代码 6 |. ~- k' a: Y$ a( D8 N
实例2 : 递归
; W3 J; j# k) k- # 返回 x 在 arr 中的索引,如果不存在返回 -1
' V( [0 ^9 o0 R" P' o: W3 ?( x# A0 B - def binarySearch (arr, l, r, x): ( j4 ]% m2 v4 F. H
- 8 I' y# h; v, v: h8 b, r; h; Z' l
- # 基本判断' d6 R) `9 Q; _9 V9 u% {+ o. ~. m0 x
- if r >= l:
- h1 u* q- ]( q9 [4 M9 a, R7 Y o5 c - , w8 `& K# b7 W0 \( _8 \
- mid = int(l + (r - l)/2)8 g1 { l3 d. ]4 x+ O" N
- ( I' u2 ~2 g0 ?2 }/ z* }
- # 元素整好的中间位置
1 z9 q( y6 O9 r - if arr[mid] == x:
; d2 @, y, e9 I% V( X - return mid + z; J0 s/ |; E
- 3 i8 |( I- g5 V% P- f
- # 元素小于中间位置的元素,只需要再比较左边的元素! M3 r! Y) o) {) r
- elif arr[mid] > x:
1 `$ E% ] ^! b8 ? - return binarySearch(arr, l, mid-1, x)
; ~) ~: h& X8 ^+ Q - ! N# P, l" [3 |: P- F
- # 元素大于中间位置的元素,只需要再比较右边的元素) \9 |# ]* ]# A) @$ a- q
- else:
- F8 `6 v, x' D/ \( \/ i - return binarySearch(arr, mid+1, r, x) . e9 b% }4 R9 ~; L$ @
- ( A6 ~6 V3 T" |# E5 d6 t
- else: 3 r6 e' x0 ^" I8 o2 B0 `
- # 不存在
2 z4 T. ?7 ~* a9 M2 [ f - return -1
0 R. e' D" X! i, T% J) ? - 7 o# s' ~4 y1 i/ W3 u% {, q
- # 测试数组8 Y( y9 z' Z: C# l/ u( ~4 F
- arr = [ 2, 3, 4, 10, 40 ] 1 w" u% _/ p& R* A( B
- x = 10
/ L: G. v6 q# [ - 4 w6 \6 v3 f( d3 t& z+ l9 d9 H' G
- # 函数调用
# w: B3 s w: ], _ - result = binarySearch(arr, 0, len(arr)-1, x) 2 z" D* [/ Y5 w* F/ Y: Y+ |
- 1 Q2 B1 B2 a% y. S }
- if result != -1: , d0 @' ?! H( M1 I5 `5 d+ a6 R# a/ c
- print ("元素在数组中的索引为 %d" % result )
" Q# D7 c$ f( s) v8 R! y - else:
1 U6 }- g; Q# L2 T' \# f - print ("元素不在数组中")
复制代码 执行以上代码输出结果为:
5 ^" ]' A8 b/ a& f$ u7 ?0 f) v/ d X* H4 Y' ~: i% M
0 n p9 G( q9 u6 ~8 y
" K1 ^' X2 E& d8 r$ g' Z2 \
' Z& w6 e5 Y; {, Q+ I/ Q; R! B9 I. K l0 ]$ g9 \* Z$ y
注:log2X+1 = ? 次 (X为序列的总元素数量) |
|